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Abstract. Nonlinear effects on the free evolution of three-dimensional disturbances are discussed, these distur- 
bances having a spot-like character sufficiently far downstream of the initial disturbance. The inviscid initial-value 
formulation taken involving the three-dimensional unsteady Euler equations offers hope of considerable analytical 
progress on the nonlinear side, as well as being suggested by some of the experimental evidence on turbulent spots 
and by engineering modelling and previous related theory. The large-time large-distance behaviour is associated 
with the two major length scales, proportional to (time) 1/2 and to (time), in the evolving spot; within the former 
scale the Euler flow exhibits a three-dimensional triple-deck-fike structure; within the latter scale, in contrast, there 
are additional time-independent scales in operation. As the typical disturbance amplitude increases, nonlinear 
effects first enter the reckoning in edge layers near the spot's wing-tips. The nonlinearity is mostly due to interplay 
between the fluctuations present and the three-dimensional mean-flow correction which varies relatively slowly. The 
resulting amplitude interaction points to a subsequent flooding of nonlinear effects into the middle of the spot. 
There it is suggested that the fluctuation/mean-flow interaction becomes strongly nonlinear, substantially altering 
the mean properties in particular. A new global viscous-inviscid interaction between the short and long scales 
present, involving Reynolds stresses, is also identified. The additional significance of viscous sublayer bursts is also 
noted, along with comments on links with experiments and direct numerical simulations, on channel flows and jets, 
and on further research. 

I.  Introduct ion  

The  deve lopm e n t  of  the three-dimensional  ' spot '  or  travelling dis turbance f rom an initial 

localized dis turbance  in an otherwise laminar  bounda ry  layer  involves mainly downs t r eam 

travel ,  some  ampl i tude  growth  and spatial spreading of  the spot. Three  basic types of  spot  

m a y  be identified, namely  laminar,  t ransit ional  and turbulent ,  depend ing  on the ampl i tude  

and spectra  of  the initial dis turbance.  All three are of  much  interest  in terms of  the 

fundamen ta l  fluid dynamics  involved and the applications.  
M a n y  exper imenta l  studies have been  made  on various aspects of  turbulent  spots,  with 

fascinat ing and somewha t  varied results, for  example  on the main  a r rowhead-shaped  par t  of  
the spot ,  on  its tail, on  the not ional  speed of  the spot ,  on its spreading rate,  and so on.  See 

E m m o n s  [1], Katz  et  al. [2], Glezer  et al. [3], Riley and Gad-e l -Hak  [4], Perry  et al. [5], 
Walker  [6], Falco [7], C .R .  Smith et al. [8], Gad -e l -Hak  et al. [9], B a n d y o p a d h y a y  [10], 

Lighthil l  [11], Schlichting [12], Chambers  and T h o m a s  [13], Wygnanski  et al. [14], Schubauer  
and Klebanof f  [15], H e a d  and B a n d y o p a d h y a y  [16], Johansson  et al. [17], Henn ingson  and 

A l f r edson  [18], R o b i n s o n  [19], and o ther  papers  in this issue o f  J. Eng.  Maths.  Outs tand ing  

fea tures  found  exper imenta l ly  include the following. (a) Much  of  the dynamics  in a spot  
resembles  closely that  in a fully turbulent  bounda ry  layer. (b) A turbulent  spot  develops  fast, 
typically f rom localized dis turbances with large initial ampli tude.  (c) The  growth  and 
spreading of  a fully turbulent  spot p robab ly  take place in a domino- l ike  manner ,  possibly 
associated with the successive p roduc t ion  of  hairpin vortices in the flow near  the solid 
surface.  (d) The  spanwise growth of  the spot  greatly exceeds the growth  normal  to the 
surface.  (e) The  f ront  and the spanwise side edges,  or  wing-tips, o f  the spot  are  notably  
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sharp, with interaction between the spot and trailing wave packets especially near the 
wing-tips. Several other experimental features of interest are also described in the above 
papers. 

Again, interesting computations have been performed on transitional/turbulent spots, 
mostly for channel flows and more recently for boundary layers. Most are confined to 
simulations with spatially periodic boundary conditions but, for a large period, they seem to 
reproduce fairly well some of the major experimental findings. Examples are in Leonard 
[20], Bullister and Orszag [21], Henningson et al. [22], Henningson and Kim [23], Lundbladh 
and Johansson [24], Fasel [25], Fasel and Konzelmann [26], and other papers in this issue. 
Much extra physical insight and understanding have still to be provided, nevertheless. 
Systematic tracking of the effects of increasing amplitude for instance largely remains to be 
done, both experimentally and computationally, apart perhaps from Henningson et al. [27] 
and Cohen et al. [28] upon which comments are made near the end of this section. 

Until recently little or no systematic theory/analysis had been done either, as far as we 
know, especially on the scales and flow structures necessary for a clear physical understand- 
ing of the spots' behaviour. A strongly nonlinear theory is desirable but except for the 
research below there appears to be no substantial effort in that direction, specifically for spot 
evolution, i.e. the initial-value problem. Our prime aim here combined with the related 
works (Doorly and Smith [29], Smith [30, 31], see also Gaster [32]), as far as possible, is to 
review and develop recent nonlinear theory and in particular address the experimental 
findings (a)-(e) above. Much of these findings can be described by the theory, taken in 
conjunction with the study of Smith et al. [33], even though many complex phenomena arise 
during spot evolution in practice, there is significant dependence on the particular ex- 
perimental configurations and conditions used, and there are many nonlinear aspects still to 
be explained or explored.  

The Euler stage of Smith et al. [33], Smith and Burggraf [34] appears to be the closest, of 
any rational theory for high Reynolds numbers (Re), to describing boundary-layer turbu- 
lence in a systematic fashion. That view is supported in the two last-named papers and also 
by the more empirical modelling of Walker [6]; see also C.R. Smith et al. [8], Hoyle et al. 
[34], Peridier et al. [35, 36]. The local flow within the boundary layer is then controlled 
predominantly by the three-dimensional [3D] unsteady nonlinear Euler equations, according 
to the above description/model, apart from interludes, however brief, when eruption of the 
otherwise thin viscous sublayer occurs near the surface and injects a substantial burst of 
localized vorticity into the Euler flow (see also w below). This Euler stage corresponds to 
nonlinear disturbance wavenumbers a, /3, frequencies o~, propagation speeds c and am- 
plitudes (e.g. pressure p', velocity u') all of O(1), based on the boundary-layer thickness and 
local freestream speed, thus representing a wider range than conventional linear-type 
Tollmien-Schlichting disturbances which have a,/3, w, c, [p'[, [u'[ all smaller by an order of 
magnitude. In consequence, it seems not unreasonable to tackle the spot-evolution problem 
theoretically first by means of the same Euler-stage nonlinear approach, but as a nonlinear 
3D initial-value problem for a localized input disturbance (rather than a fixed-frequency 
problem, for example). That indeed is the concern of much of this article. 

In w below the governing equations are presented, with attention being drawn to the 
"trailing-edge" region existing between the two main zones with length scales of order 
(time) ~/2 and (time) downstream, in nondimensional terms. It is something of a surprise to 
find that the solution of the 3D Euler equations acquires a 3D triple-deck form, within the 
(time) ~/~ scale just mentioned. The article then moves on, in w to nonlinear effects acting 
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near the wing-tips or side edges of a spot, since the earlier linear theory of Doorly and Smith 
[29] suggests that is where nonlinearity may appear first naturally as the typical input 
amplitude is increased or as the spot progresses further downstream. This also has possible 
connections with the experimental finding (e) above. The linear theory just mentioned, in 
which the initial-value problem can be solved in exact form for some contexts, shows the 
emergence of a number of distinct zones downstream at comparatively large times, the two 
main length scales induced being proportional to the scaled time and to its square root. The 
maximum amplitude, however, is produced in a relatively thin region near the wing-tip of 
such a linear spot. That property, along with the near-neutrality of the linear-spot behaviour 
at large times and distances, motivates the study of nonlinear wing-tip effects first. 
Moreover, these effects are found to lead on subsequently to other cases, corresponding to 
further increases in the typical amplitudes, where nonlinearity gradually floods into the 
middle portion of the spot [w167 5]. 

The major responses in w167 4 arise from interaction between the dominant fluctuations, or 
fast waves, and the 3D mean-flow correction, with the wall-layer and critical-layer influences 
diminished in relative terms. The resulting nonlinear amplitude equations in turn lead on to 
certain significant percussions regarding strongly nonlinear effects at substantially increased 
amplitudes, where interesting scales emerge which seem to be physically sensible, for the 
middle of the nonlinear spot (w This study and the related works also suggest possible new 
experiments of interest, and direct computations, regarding the effects of increased input 
amplitudes on spot evolution. 

Sections 6-8 then deal respectively with the O(time) zone further downstream, with 
viscous effects particularly from the assumed thin wall sublayers, and with further comments 
including experimental comparisons and links and the applications to channel flows and wall 
jets. 

The current work tends to split the spot dynamics into two categories, global (mainly 
inviscid) and internal (viscous-inviscid) properties, and to concentrate on the former 
throughout w167 Nevertheless, a new long/short-scale global interaction is identified in w 
linking the 3D viscous boundary-layer equations and unsteady Euler equations via Reynolds- 
stress forces, sufficiently far downstream. Internal properties, flow structures and their 
interactions with the more global dynamics are summarized briefly in w and are addressed in 
more detail in the recent literature cited there. Although, as a starting point, the viscous 
sublayer and its eruptions are neglected at first, these eruptions and the ensuing local vortex 
formations (w can become important in practice, and they are the subject of recent 
theoretical and/or computational studies by Smith [37], Hoyle et al. [34], Peridier et al. 
[35, 36], as reviewed by Smith [38], Walker [6], C.R. Smith et al. [8] for example. Not least, 
they introduce shorter length and time scales, and hence even higher frequency and 
wavenumber content, and they almost certainly play a key part in the domino process 
mentioned earlier. 

The global Reynolds number Re, based on the airfoil chord and free-stream in the 
aerodynamic context for example, is assumed large, and we address here the 3D nonlinear 
incompressible r6gime. The work is aimed eventually at relatively high-amplitude nonlinear 
responses, as opposed to gradual transition following linear instability for instance (see also 
comments in Doorly and Smith [29] and related papers). The latter transition for spots is 
considered in Cohen et al.'s [28] interesting, mainly experimental, study, i.e. with input 
spectrum corresponding essentially to longer, Tollmien-Schlichting, length and time scales, 
lower amplitudes and relatively slow propagation (until breakdown occurs later on), in 
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contrast with the present wider spectrum of faster, Euler, scales, higher amplitudes and 
faster propagation, equivalent to a nonlinear by-pass mechanism. The extension to com- 
pressible boundary layers started by Doorly and Smith [29] needs following through and 
there may be impact also in several other areas, including ship wakes. Many issues and 
aspects are left unresolved, of necessity, and research on some of these is in progress. Again, 
we should emphasize that we do not claim uniqueness in the nonlinear spot behaviour for 
relatively large times and distances. Alternative effects might include resonant or other 
interactions and stronger unsteady or nonlinear critical-layer effects. The major physical 
effects investigated here however are through nonlinear interactions between the fluctuations 
present and the mean flow. 

2. The nonlinear governing equations, and the spot trailing-edge 

The main 
Burggraf 
equations 

context concerns the Euler stage for large fully nonlinear disturbances (Smith and 
[34]; Smith et al. [33]) where the unsteady nonlinear 3D incompressible Euler 
apply, 

U x @ Oy -~- W z ~-" 0 ,  (2.1a) 

u, + uu  x + vuy + wu  z = - P x  , (2.1b) 

v, + uv~ + vvy + wv~ = - p y  , (2.1c) 

W t "~- U W  x "~ V W y  Jr- W W  z = -Pz , (2.1d) 

throughout the boundary layer, at large global Reynolds number Re. Here the non- 
dimensional velocity components u, v, w and the corresponding x, y, z cartesian coordinates 
(streamwise, normal and spanwise, respectively, with an origin shift) are scaled with respect 
to the local free-stream speed and the typical boundary-layer thickness O(Re-~/2), in turn, 
and similarly for the O(Re -1/2) timescale t and the O(1) pressure scale p. The main 
boundary conditions are 

~(Ue, O, We, O ) as y - - - ~ ,  
(u,  v ,  w ,  p)---~ [ ( u B ( y ) ,  O, w B ( y  ),  0) as x 2 + z2--* ~ ,  

(2.2a) 
(2.2b) 

v = 0  at y = 0 ,  (2.2c) 

where the conditions (2.2a, b) are to match with the free stream outside the boundary layer 
and with the undisturbed boundary-layer profile u B ( y  ) holding sufficiently far from the initial 
disturbance, and (2.2c) is the tangential-flow constraint at the solid surface. For the present, 
u e =-- 1, w e = w s ( y  ) =- O. The profile u B ( y  ) is supposed here to be monotonic, inflexion-free, 
and uB(~ ) = 1, u~(0)= A B >0 .  An example is the Blasius profile. The initial disturbance 
itself is fully nonlinear in general, so that 

(u, v, w, p) is prescribed (for all x, y, z) at t = 0,  (2.3) 

consistent with (2.1a-d). The problem (2.1a)-(2.3) is a computational one usually. 
The current work addresses the issue of the possible solution properties of the nonlinear 
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initial-value problem above at large times, and especially far downstream of the initial- 
disturbance position, given guidance from the linearized analysis of Doorly and Smith [29]. 
At large times t two major length scales arise in the plan-view (xz plane), one very far 
downstream at distances O(t) and the other less far downstream, at distances O(tt/2). These 
two scales also occur in the Doorly and Smith work. Below we are concerned primarily with 
the O(t 1/2) length scale, since certain significant features are found to arise first there, even 
though this is the zone that trails the majority (the O(t) zone, see w of the spot. See Fig. 1. 
An order-of-magnitude argument suggests the perhaps surprising feature that, in the O(t 1/2) 
zone, the large-time solution of the unsteady Euler problem (2.1a)-(2.3) takes on a 
three-layer form, analogous with the triple-deck structure. The 'lowest' layer has y being 
small, with 

[u, o, w, p] ~ [t-~/2U, t-3/2V, t-~/Zw, t-~P], y = t - ' /ZY,  (2.4a) 

whereas in the 'middle' layer 

[u, o, w, p] -- [uo(y ) + t-1/2Au'B, --t- lAxuB(y),  O(t- ') ,  t - lP] ,  y = O(1) ,  (2.4b) 

and in the 'uppermost' layer in the outer reaches of the boundary layer 

[u, v, w, p] ~ [1 + t-]K1, t-16], t-lw1, t- l f i] ,  y = tl/2y. (2.4c) 

Here the unknown surface pressure P(X, Z) and negative displacement A(X,  Z) depend 
only on the scaled coordinates X, Z defined by 

(x, z) = t~/2(X, Z) (2.5) 

in the present zone. The main resulting governing equations are those for the lowest layer, 
namely 

U x + Vy + W z = O, (2.6a) 

- � 89  + ( U -  �89 x + (V + �89 Y)U v + ( W -  �89 z = - P x  , (2.6b) 

- � 8 9  + (U - �89 x + (V + �89 + ( W -  �89 z = - P z  (2.6c) 

j i 

t~) 0(0 

r 

~ O(t) - -  

Fig. 1. Flow structure in x - z  plan view (upper half only) at large times t, due to the initial disturbance (i), 
including the O ( t  1 /2 )  elliptic zone (ii) (see w the edge layer (iii), near the wing tip of the spot (see w167 4), and the 
O(t)  sized region (iv) further downstream (see w where length scales of O(1) in x, z are also induced. Compare 
Fig. 4. 
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from (2.1a, b, d), (2.4a), (2.5) with (2.1c) confirming that aP/OY must be zero; the main 
boundary conditions are 

V=O at Y=O (2.6d) 

U -  Y + A ( X , Z ) ,  W--->O, asY--->~, (2.6e) 

from (2.2c) and matching between the expansions (2.4a, b) respectively, with the constant A B 
normalized to unity; and the unknown displacement effect present in (2.6e) is related to the 
unknown surface pressure via the double Cauchy-Hilbert integral 

1 f_~ f_~ A~(~:,~b) d{ d~b P(X, Z )  = - 2~- ~ ~ [ ( X -  ~:)2 + (Z - r , (2.7) 

because of the potential-flow properties induced by (2.4c) with (2.1a-d) and the matching 
with (2.4b). An alternative formulation for the pressure-displacement interaction is in terms 
of the pressure in the outermost layer, satisfying 

2 
+ + o )`6 = o ,  (2.8a) 

fi---~ P ( X , Z )  , fiy--* A x x ( X , Z ) ,  as)7---~O+, (2.8b) 

,6----> 0 (2.8c) 

in the farfield, in view of (2.4b, c), (2.2a). Hence we are left with the task of solving the 
nonlinear simularity inviscid-boundary-layer-like system (2.6a-e), subject to the interaction law 
(2.7) or (2.8a-c), for the O(t ~'2) zone properties. The theory and allied computations below are 
concerned mostly with the "trailing edge" of the spot, where the coordinates X, Z are typically 
large and positive, between the O(t ~'z) and O(t) zones downstream: see the discussion of the 
latter in w 

Other contexts for the nonlinear initial-value problem are described by Doorly and Smith 
[29], Smith [31], but that in (2.1)-(2.8) is the principal one. We move on next to consider the 
lowest level of input or evolved amplitude that will produce a significant nonlinear response 
in the spot trailing edge, before tackling higher levels in later sections. 

3. Amplitude level I 

Order-of-magnitude and matching arguments imply that the expansion of the flow solution at 
relatively large distances X >> 1, Z >> 1 downstream in the edge layer astride Z ~-/xX takes 
the underlying form 

U = g~" + X - l / 3 ( E u o  + c.c.) + .-- + X- lure  -4- " ' "  , (3.1a) 

V = X S / 3 ( E v o  + c.c.) + . . .  + v m + . . . ,  (3.1b) 

W =  X - ' / S ( E w o  + c.c.) + ' "  +X- 'win  + �9 . . ,  (3.1c) 

for the velocity components and 
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, ( 3 . 1 d )  

A = X-1/3(EAo + c.c.) + �9 �9 �9 + X - t A m  + " �9 " (3.1e) 

for the pressure and displacement respectively. An expansion similar to (3.1d) holds for the 
outer pressure ,6. The direction factor /x = 8 -1/2, while I 7" = X-~Y,  Z - / x X  = x-l/3"0, and 
the dominant fluctuating part (subscript zero) at this stage has 

E = exp[i(btX 2 + i~X2/3"O)], (3.2) 

where b I = 33/2/16, A = (3/8) 1/2. The subscript m refers to the (real) mean-flow corrections, 
and c.c. denotes the complex conjugate. The unknown velocity coefficients u 0, u m, etc. 
depend only on ? ,  r/, while p , ,  A ,  are unknown functions of r/ alone, with the explicit 
E-dependence as shown. The arrangement of the powers of E in the terms above is partly 
due to the nonlinear effects present and partly to the wave-like dependence in E. The 
coordinates ? ,  r /a re  O(1). The successive determination of the various wave and mean-flow 
contributions then follows from substitution of (3.1) into (2.6), together with additional 
terms that arise. 

The nonlinear interaction in this stage has the effects of the higher harmonics E ~, in l/> 2, 
being negligible and so it is dominated by interplay between the fundamental fluctuations 
E*-l and the mean-flow correction E ~ The strength of this interplay is due physically to the 
relative slowness of the mean-flow variations; a similar phenomenon also arises in the next 
section. In the present stage, incorporating the modification suggested in Smith (31, p. 158), 
the governing equations of concern are found, after working through several orders, to be 

t t  

(Po - vlPo)' = iAmpo , (3.3) 

1 ~_~ A ' ( q ) d q  
- I p 0 1 2  , (3.4) 

in normalised form, controlling the complex wave part P0 and the mean part Am, with IP0l to 
tend to zero at large 171. Here (3.4) stems from a combination of the outer interaction law 
(2.7) (or (2.8)) for the mean-flow components A m, Pm and the relation p,, ~ -Ip012 obtained 
from the mean components of the two momentum equations, while (3.3) represents 
modulation of the wave amplitudes [u 0, v 0, w 0, A 0, all proportional to P0] due to the 
existence of the mean-flow correction. The critical layer and wall layer also present merely 
play a secondary role. At  lower amplitudes, A m is relatively small and so (3.3) reduces to 
Airy's equation for the wave part, in line with Doorly and Smith [29] and the classical linear 
theory of caustics, and (3.4) then provides only a small correction determining the mean-flow 
(vortex) response Am, with little feedback. At O(1) amplitudes, the fast-fluctuation/slow- 
mean-flow nonlinear mechanism becomes fully active, and computations of the nonlinear 
system (3.3), (3.4) are necessary, sample Solutions being presented in Fig. 2. These agree 
with the Airy form at reduced amplitudes. At  relatively high amplitudes however a novel 
structure is suggested to emerge, as follows. 

When IAml becomes large, the typical scale of 171 expands, like A say (with IAml- a3'2), 
IP01 also grows, like A 1/4, and (3.3), (3.4) then yield the system 

h 3 + = - a m ,  ( 3 . 5 )  
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(3h 2 + ~)r' + ( 3hh' + 1)r = 0 ,  (3.6) 

- r  2 = 1  f_~ am(q) dq (3.7) 
~" ~ - q  

Here P0 ~ A1/4r  exp[iA3/2f + O(1)] and A, ,  ~ A3/2a m with the amplitude r, the phase f and 
the mean part a m all being generally O(1) real functions of the new O(1) coordinate 
~ - A - l r t ,  and h=-df /d~ .  The increasing variation in phase is especially noteworthy. 
Analysis of (3.5)-(3.7) implies that there exists just a single acceptable phase branch for 
h(~), as opposed to the two that exist in linear theory and to the three that (3.5) alone 
would indicate for a given a,,(~). This single branch is currently believed to have h smooth 
for all ~, and a sample numerical solution of (3.5)-(3.7) is given in Fig. 3. At these 
amplitudes the function a m is negative except at quite large positive "~. So the mean-flow 
correction comprises relatively long vortices such that the mean displacement increment is 
mostly positive except outside the spot where it is negative. Also, the fluctuating components 

(a) 0 . 1  - 

Y 

0.1 

-7.5 -5 -2.5 0 

- 0 . 1  - 

iii 

I 

2[5 5 

F i g .  2 .  Solutions computed for the wave contribution P0 (real part  i, imaginary part  ii) and the mean contribution 
A,, (iii), at two amplitudes within level I: (a) small, (b) of order unity. Note the changes of scale, and of phase, and 
the square-root  growth of A,, as r/---~oo. 
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Fig. 2. (Continued). 

have their positions of maximum amplitude gradually being moved towards the middle of the 
spot's trailing edge. The large-A theory here points to the new interactive structure that 
comes into play next at an increased amplitude level. 

4.  A m p l i t u d e  leve l  II 

Significant changes are found to occur first when the amplitudes increase (slightly) to the 
stage where Z- /xX becomes of order unity. That corresponds formally to A above rising to 
the order X 1/3, yielding estimates for the new orders involved here. 

The expansions now holding therefore have Z - / x X =  ~ being of O(1), as is I 7, and 

x r - I / 2  ^ 
U = X ]  ~ Jr  X - 1 / 4 ( / ~ / ~  0 "]- c . c . )  + " "  "-[- 2t .  u m J r ' "  , (4.1 a) 

V = S 7 / 4 ( E u o  -+- c . c . )  " J r ' "  Jr  s l / 2 u  m J r " "  , (4.1b) 
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-100 ~ I00 

-0.5 j ............................................... ~i .................................................... 

.................................................................................................... .....-"'"" 

F/g. 3. Numerical solutions for the increased-amplitude response of (3.5)-(3.7), corresponding to the upper 
extreme of level I or the lower extreme of level II: (i) h, (ii) r, (iii) a m. Dashed curves denote farfield asymptotes. 

x T - I / 2  ^ 
W = X - 1 / 4 ( E l , ~ 0  q- c . c . )  q- �9 �9 �9 + ~1~ W m  --~ . . .  , (4.1c) 

. r - 1 / 2  ^ P = X 3 / 4 ( / ~ t ~  0 + c . c . )  ~ - " "  q- A P m  + ' ' "  , (4.1d) 

A = X - 1 / 4 ( / ~ / ~  0 + c . c . )  -~- �9 �9 �9 q- X-1/2Am + ' " ,  (4.1e) 

c.f. (3.1a-e),  with fi having an expression similar to (4.1d). The primary fluctuating part 
here is given by 

/~ = exp[i(bx X2 + AXe/+ X1/2)~(r (4.2) 

because of the enhanced phase variation, here the unknown function )~(~). The main new 
contributions in this stage come from extra inertial effects in the momentum balances for the 
mean-flow correction, in (4.3c) below. Apart from that, the dominance of the (long/short) 
interaction between the fundamental fluctuations and the mean flow stays intact. 

Substitution of (4.1), (4.2) into (2.6)ff and integration in I 7" yields eventually the new 
controlling equations for the unknown wave amplitude/~0, mean correction A m and phase 
term )~, in the normalised form 

j~ '  3 h- 21r - -  j~ =- A m ' (4.3a) 

+ ' + (�88 + a  7")lPol = O, (4.3b) 

= - -  7 "7 . -kAm- (IPo?)' _ ~  7 / -  q (4.3c) 

The constant a 2 is positive. It is seen that (4.3a-c) are analogous with (3.5)-(3.7) in turn, 
with the two extra inertial effects in (4.3c)'s left-hand side being evident. Solutions for the 
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current level II are presented by Dodia et al. [39]. At reduced amplitudes the match is 
achieved with the level-I description in the previous section, as expected. For sufficiently 
enhanced amplitudes II, at the opposite extreme, the influence of the integral contribution in 
(4.3c) is believed to die out, signalling a diminution of the mean-flow effect produced by the 
motion near the external stream. 

T h u s  A m typically becomes of order A3/2(large) then, with the ,)-scale expanding like 
^3/2 /~5/4 

and Ifl,  I&l increasing like A , . As a result, (4.3a, b) remain in full, at large 
amplitudes, but (4.3c) reduces to 

- � 8 9  m - *),~- = ( l&l=)  , (4.4) 

This reflects a balance between the mean-flow momentum, near the wall, and the Reynolds- 
stress effects there due to the amplitude-squared inertia from the main fluctuations. The 
balance contrasts with that in (3.7) for instance. [Solutions of (4.4) with (4.3a, b) are given 
in the last reference and are analogous with those described later in w The next move is to 
consider the new stage that must arise as the amplitude level continues to increase. The new 
stage occurs when the whole of the trailing-edge region becomes affected by nonlinearity, 
i.e. the typical Z - / ~ X  value rises to O(X), corresponding to ,~ increasing dramatically to 
O(X) in effect. Then IAml increases to O(X3/2), as does I•ml since they are proportional, 
and so the mean-flow correction becomes comparable with the basic mean flow IX1? in 
(4. la)], formally. In consequence, a strongly nonlinear effect is implied at that level, with the 
fluctuating part ~ X-1/4z~0 also increasing to the order X since I A01 ~ I~01 - x 5 ' '  then. This 
is investigated below. 

5. Amplitude level III, affecting the entire trailing-edge 

Here the characteristic amplitude level for both the fluctuating and the mean-flow parts is 
raised to O(X),  as far as the velocities U, W and the negative displacement A are concerned, 
with corresponding increases in V, P, as inferred from the previous level II. The nonlinear 
interactions present now become strongly nonlinear however and effectively all the higher 
harmonic fluctuations also play a significant role, as follows. Since Z- and X-variations are 
comparable when the whole of the trailing-edge region is considered, we work in terms of 
the polars R, 0, where (X, Z )  = R(cos 0, sin 0) = R(c, s), and now 0 is O(1) typically with R 
being large. Hence the flowfield solution has 

O= R(O  m + 0/) + - . . ,  (5.1a) 

V = R 3 ~ + R ( V  m + ~ ) + " "  , (5.1b) 

l~r = R(rVT/m + I~f)+ .--  

P = R 2 P f  +(Pm+ t's)+ . . .  , 

(5. lc) 

(5.1d) 

A = R(,4 m + fir) + . . . .  (5.1e) 

The relative error in (5.1) is O(R -2) throughout and, again for convenience, U, W are 
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the R-, 0-velocities, so that U =  U c - f f s ,  W= Us + ffc and, for example, (U, f f ) ~  
( Y  + A)(c ,  - s )  at large Y from (2.6e). In the above the subscripts m, f refer to the mean 
parts and the fluctuating parts respectively, the latter having zero mean. The total mean flow, 
e.g. (Jm, is unknown now but it varies slowly, being dependent on 17, 0, whereas the 
unknown fluctuations, e.g. 0 r, depend also on the rapid variable F=-b(O)R  2 and represent 
in effect Fourier series in F. The phase function b(O) has also to be found. 

The main controlling equations from combining (5.1) with (2.6)ff are 

0g 0< 
2b ~ + O--f + b' ~ = 0,  (5.2a) 

2 ( 0 "  + 0 i -  �89 (9 O/.)f - 2 b  - - ,  (5.2b) + ~ - ~ ( C I  + ( ] f ) + ( f f m  + Wf )b '  OF = OF 

Offf - 0 
2( U m + Oi - �89 )b ---~ff- + Vi ---d-f ( ff" m 

0fff 0/sf 
. . . .  b ' - -  (5.2c) + ~ ) + ( f f m  + f f l )  b OF O F '  

nominally for the dominant fluctuations, coupled with a similar but forced linearized system 
for the fluctuation corrections and with the nonlinear system 

20,,  17 0 0 "  017"  ~0ff" 
- - + - 0 

OY OY + oo = 
(5.3a) 

- Or" -  OOm 
- __ - y - - - ~ ) + ( r  - , (5.3b) 

-Off"  Off" - Off" 0") S2, (53C  
- - Y - - ~ ) + ( V " + � 8 9  OY + W " ~ - - ~ - +  = 

holding for the mean flow. Here 17" stands for R-1Y and is comparable with the previous 1?, 
while $1, S 2 are Reynolds stress terms which can be shown to be proportional to the square 
of the typical amplitudes of the dominant fluctuations. Likewise, a part of the fluctuation- 
correction system mentioned above can be shown to yield a compatability relation (CR, say) 
between the mean flow and the dominant fluctuations. Consequently, (5.2a-c) [with the 
appropriate PI-AI law derived from (2.7) or (2.8)], CR and (5.3a-c) are found to provide 
overall a closed nonlinear system controlling the major unknowns, namely the dominant 
fluctuations, the total mean flow, and the phase function b(O). 

These and other features of this level-III interaction are currently being studied: Bowles et 
al. [40]. Clearly the part (5.2a-c) can be simplified somewhat by taking the skewed velocity 
component (2b/Jr + b ' f f~ )  and combining (5.2b, c). If also the skewed mean flow is assumed 
to maintain a uniform shear, as in the previous two sections, then (5.2a-c) lead to a 
travelling-wave form of the Benjamin-Ono equation, for the dependence of fi~I on F, thus 
verifying the existence of nonlinear multiple waves. Corresponding simplifications occur in 
the other parts of the overall system. One notes also that the mean pressure gradient has 
negligible influence now (see (5.3b, c)), and likewise for the mean contribution in the 
interaction with the external stream. Again, at reduced amplitudes the necessary merging 
with level II is obtained. The behaviour at increased amplitudes in level III is expected to 
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involve more concentration of the spot's spread, as 3D longitudinal vortex strength 
increases; see Bowles et al. [40]. 

6. The spot centre 

In the main body of the spot, at larger distances x - t  downstream, the full Euler equations 
(2.1) appear to come back into play, from the following reasoning. Formally the scaled 
distances X, Z, and hence R, then tend to 0(tl/2), to make x, z be of order t. It follows that 
the y-scale that was originally t -~/2 in the lowest layer of (2.4a), but is then enhanced by a 
factor O(R) in w167 rises to O(1). Simultaneously, the uppermost y-scale behaves as 
tl/2R-I typically (see (2.4)ff), because of the fast E, /~ or F variations in w167 and so it 
also tends to O(1) as R increases to the order t ~/2, while the y-scale of the middle layer in 
(2.4b) stays O(1). Therefore the three-layer structure described in w collapses into a single 
structure. Along with this, the characteristic variation of the fluctuating parts, with respect to 
x, z, becomes faster due to the rapid F (or E, /~) dependence, essentially by a length factor 
of order R -1, or t -1/2 now; derivatives involving F are greater than those not involving F by 
a factor O(R2). This implies that the characteristic length scale in x, z falls to O(1) as far as 
the fluctuations are concerned. Again, the strong nonlinearity encountered in w points to 
strong nonlinearity persisting as the x = O(t) zone is entered downstream. For example, the 
velocity u becomes O(1) then, from (2.4) with (5.1a, c). All the above leads to the full 
unsteady 3D Euler system, then, holding in the centre of the spot, and implying a large 
numerical task of course. 

That is not the whole story, however. For, according to w there is significant interplay 
between those fast fluctuations and the more slowly varying total mean flow. So there must 
be extra length scales in operation, specifically lengths x, z of O(t) in fact [from reasoning as 
in the previous paragraph], in addition to the O(1) length scales above. The extra length 
scales are associated predominantly with the equations for the mean flow (slender-flow 
equations, cf. (5.3)) and they must play an equally important role, linking the main short- 
and long-scale behaviour in similar fashion to the links discussed in w 

Moreover,  as the spot continues even further downstream, to distances x, z of order Re ~/2 
measured from the initial disturbance [i.e. global distances 2, f of O(1), since (2, z-)= 
Re-~/2(x, z)], the two interacting short and long length scales above become O(Re -1/2) and 
O(1) respectively, in the global coordinates x, z, with the normal coordinate staying 
O(Re- t /2) .  These scalings appear to be physically sensible. A new feature arises then, 
however, since viscous forces must affect the mean-flow equations on the x, z -  1 scale. 
Indeed,  the 3D boundary-layer equations are implied, 

ti x + 6y + ffz = 0 ,  (6.1a) 

ui + t~t~ + 6t~y + fft~ = g~ - fii + tiyy, (6.1b) 

(6.10 

essentially for the unknown mean-flow velocities (ti, 6, ff)(s y, s t-), where {--=Rel/2t 
denotes the global time. Here fi(2, :?, t-) is the prescribed external-stream pressure, 
associated with (ti, W)--->(Ue, We)(s s t-) say, as y - - , ~ ,  whereas sx, s 2 are the unknown 
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Fig. 4. Spot flow structure at much later times, i.e. global [ of order unity, showing the O(1) x O(1) global region 
governed by the 3D boundary-layer equations and the O(Re -1'2) x O(Re -1/2) small Euler regions inside. The 
regions are linked together as described in w with their common normal scale being O(Re-~/~). Sub-scales are 
discussed in w 

Reynolds stress terms (cf. (5.3b, c)) comprising nonlinear effects from the fluctuating velocity 
components governed by (2.1). The full interaction between (6.1), (2.1) also involves the 
mean profile zi = u 8 in (2.2b), which is now dependent on s y, ~, [ and unknown, as is the 
corresponding nonzero }~ = w 8 in general. It is intriguing that, according to the above 
argument, the flow properties on those two length scales remain fully interactive, with the 
viscous 3D boundary-layer system (6.1) and the inviscid 3D Euler system (2.1) being 
coupled together via the Reynolds stresses in (6.1b, c) and the profiles in (2.2). See Fig. 4, 
and observe that interference is assumed negligible from the elliptic O(Re -1/4) zone that was 
originally the O(t 1/2) zone, lying behind the spot and surrounding the initial station. 

As with other aspects, the present area seems to merit much further research. The impact 
of high-amplitude analysis for example, mentioned near the end of the previous section, 
remains to be studied here. In addition to the above broader-scale behaviour, however, 
there are finer-scale responses to consider, as in the following section. 

7. Internal dynamics and viscous effects 

The major element missing so far in the above theory is viscosity, which substantially 
governs the finer-scale dynamics and the connection with larger scales, apart from the 
interesting global-scale effect predicted in (6.1)ff. Although our concern in the majority of 
this article is with global features, we also consider the internal features briefly below, more 
details and description being given in the references cited. 

An important role is played by the 3D viscous sublayer or sublayers lying (initially) 
between the mainly inviscid regions studied in Sections 2-6 and the solid surface. The 
sublayer is neglected above, as it is assumed to remain relatively thin and secondary, and 
that seems likely to stay entirely true for the first stages I, II addressed in Sections 3, 4. At  
higher amplitudes such as III however the sublayer, which initially occupies only a small 
fraction O(Re -1/4) of the complete boundary layer, is governed by the classical non- 
interactive unsteady 3D boundary-layer formulation [(6.1) in effect, without the Reynolds- 
stress terms] holding beneath the Euler form of (2.1). Hence the sublayer is subjected to 
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strong unsteady pressure gradients, including adverse ones, produced by the strongly 
nonlinear inviscid behaviour in III for instance. First thoughts would suggest that, under such 
prescribed pressure gradients, the sublayer is likely to erupt in the sense of its solution 
becoming singular within a finite time in the Van Dommelen [41] fashion, such that 

61--->~ ast-->t~. (7.1) 

Here 81 is the usual scaled sublayer displacement thickness, the singular time t 1 is finite, and 
(7.1) occurs locally at a particular x station; see the structure involved in Elliott et al. [42]. 
The singularity is especially relevant if the inviscid Euler behaviour predicted by (5.2)-(5.3) 
or (2.1) becomes extreme in its amplitude variation. Again, (7.1) is written as if for 2D flow 
but the 3D case appears to be predominantly quasi-2D anyway (Elliott et al. [42], Cowley et 
al. [43]). More significantly, the flow solution next moves into shorter length and time scales 
until inner-outer interaction takes place between the increasing displacement (effectively 81) 
and the induced pressure due to back-influence from the inviscid slip stream outside, as 
described by Elliott et al. [42]. At that stage the work of Brown et al. [44] comes into play, 
implying a further and stronger singularity in the displacement as well as in the local 
pressure, and hence yet newer physics enters the reckoning. Recent theoretical and 
computational studies of that stage have been made by Cassel et al. [45], with F.T.S. 
extending the work to 3D. 

Further thought however points to the finite-time break-up of Smith [37] as being more 
likely to arise in practical as well as theoretical terms. This nonlinear break-up singularity is 
associated with inner-outer interaction affecting the sublayer and such interaction is always 
present. The break-up occurs at a time (t 2 say) earlier than the non-interactive time g,  since 
the nonlinear break-up criterion of the last reference is met earlier. See Cassel et al. [45]. 
The break-up involves the local response 

Iop/0xl  , ast--*t2 (7.2) 

in particular, with the pressure remaining finite but the pressure gradient and the normalised 
wall shear stress ~'w becoming infinite in anticipation of a change of scale. The break-up (7.2) 
is followed by the entry of new physical effects locally, corresponding to the creation of 
significant normal pressure gradients and nonlinear critical-layer interaction, on a shorter 
time scale: Hoyle et al. [34]. After that the flow may enter a stage of temporary or 
permanent roll-up of a local vortex, as suggested in the last reference. Studies of these 
further stages are in progress, at least for 2D motion, while the extension to 3D is started in 
Hoyle [46], Hoyle and Smith [47] and is currently being continued. 

Agreement between the theory for (7.2) and accurate computations is found to be close, 
as Peridier et al. [36] show. Agreement between the theory and experiments is also 
reasonably close, as discussed by Smith and Bowles [48] for the Nishioka et al. [49] 
experiments on the first spike in transition. The nonlinear criterion for the first spike has the 
integral form 

fo~ (ti - c) -2 dy = 0 (7.3) 
0 

in essence, according to the theory in Smith [37], where t~(y, t) denotes the local velocity 
profile in the sublayer and c is the inflexional velocity; the criterion (7.3) is near to being 



88 F.T. Smith et al. 

Y 

J 
0 012 0',4 0'.6 0'.8 1'.0 

~ h  

0.6- 

0.4 

(b) 

IiII II 
i t i , i , i 

0 2 4 6 8 

Fig. 5. Comparisons between theory (Smith and Bowles [48]) and experiment (Nishioka et al. [49]) concerning the 
nonlinear criterion (7.3) and the first transitional spike. Explanation of the cases 0-8 is given in the former 
reference. 

satisfied by the experimental profiles as Fig. 5 shows. Both the theoretical-computational and 
the theoretical-experimental comparisons are encouraging aspects. 

Finite-time break-up must occur sooner or later, then, and much further work is called for 
to understand more fully the impact of these internal eruptive or bursting processes on the 
larger-scale Euler evolution addressed in Sections 2-6 and the generation of faster time and 
length scales and hence higher frequency and wavenumber spectral content. There is in 
particular the issue of whether, or not, a clear link can be established with the formation of 
hairpin vortices in reality, the observed hierarchy of scales, and the so-called turbulence 
reproduction cycle (see 'domino process' earlier), near the surface: e .g .C .R .  Smith et al. [8], 
Grass et al. [50] and references therein. Certainly, (viscous induced) eruptions as in (7.1), 
(7.2) can also take place in other scales, both larger as in the context of (6.1) and smaller, cf. 
the cascade process described by Smith et al. [33] which predicts the scales 

O(Re -a In Re ) ,  (7.4) 

O(Re-3/4) ,  (7.5) 

for the final turbulent sublayer thickness and the microscale of the mid-flow respectively, in 
agreement with common turbulence models and the Kolmogorov estimate in turn. 

8. Further applications, comparisons and comments 

This area of research, on which work done and work in progress have both been reviewed 
above, is felt to be in an interesting and challenging state as regards both the global and the 
internal properties considered theoretically above for nonlinear spots. The strong more 
global nonlinearity encountered in Sections 5, 6 is particularly exciting as is that in Section 7 
for the more internal flow features. We would especially highlight the novel interaction that 
arises on the largest scale (airfoil scale) as covered by (6.1) coupled with (2.1). The highest 
amplitudes tackled so far, in Sections 5, 6, require concerted further study however. A point 
of interest here is that an alternative to (5.1), with only small O(R-L) mean-correction and 
small wave terms in A for example, also seems consistent on the face of it, thus reinforcing 
the need for such further study. A related point is that markedly different flow structures 
might be set up sufficiently far downstream of the initial disturbance as mentioned in Section 
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1, although there is little work in connecting these structures with an initial-value problem as 
here. Likewise, mention should be made of the near-planar case set up experimentally by 
Kachanov et al. [51], the 2D inviscid theory of which is much easier to handle, but our 
emphasis is on the 3D nonlinear development which represents the more common case. 
There is in fact a wide variety of scales present within the 3D spot evolution identified by the 
theory, agreeing with the description of "spots within spots", and the overall picture looks 
fairly encouraging and self-consistent as a basis for continuing study. 

Channel flows and the broadly similar flows of wall jets are considered by Dodia [52]. In 
such flows the spot evolution has a form related to, but different from, that for the 
boundary-layer case of Sections 2-7. We shall be brief. The large-t response is distinct from 
(2.4), (2.5), and the pressure-displacement law alters from (2.7). Hence it is found that level 
I is by-passed and the amplitude level II of w is encountered immediately, as the first 
nonlinear stage. The same scalings as in w apply except that /~ in (4.2) needs modifying 
slightly, with X 3/2 replacing X 2, among other things. The solutions during that amplitude 
level and their growth in the large-A extreme corresponding to (4.4) are presented by Dodia 
[52]. Beyond that, e.g. at level III, the spot flow structure, expansions and controlling 
equations are believed to become essentially the same as for the boundary-layer case, partly 
because the mean pressure-displacement law then plays only a passive role. 

Concerning mainly boundary layers again, the theory tentatively appears to fall in line 
with all the experimental findings (a)-(e) summarized in w it is believed, in a qualitative or 
quantitative sense. The finding (e) concerning the sharp front and edges of the spot, and 
trailing wave packets, has not been touched upon specifically in this article, but it is discussed 
by Smith et al. [33], Smith [31] and partly by Kachanov et al. [51], while the findings (a)-(d) 
are all implicit in the present theory. On the other hand, agreement with experiments is poor 
so far for the spot spreading rate (in plan view), although this may change once solutions for 
the amplitude level III and beyond (w167 are obtained. On more global features (w167 
some qualitative agreement with experiments and computations is demonstrated in Smith 
[30] for the initial-value problem (2.1) alone, while Kachanov et al. [51] find surprisingly 
good agreement with experiments carefully controlled to remain 2D for a long way 
downstream. On the more internal features quantitative agreement with computations and 
experiments has been noted in w and in Fig. 5. In another but related context, Fig. 6 shows 
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Fig. 6. Comparisons concerning the origins of turbulent spots in forced transition, for slightly 3D input upstream. 
Theoretical (Stewart and Smith [53]) blow-up locations b, c, d are compared with the 'breaking-point' locations 
found experimentally (Klebanoff and Tidstrom [54]) in the runs B, C, D. 
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quantitative comparisons between nonlinear theory in Stewart and Smith [53] and experi- 
ment in Klebanoff and Tidstrom [54] with regard to the so-called breaking point found 
downstream of a slightly 3D (maintained) input in the experiments. The comparisons are 
again close. The breaking point here signals the onset of turbulent spots in the subsequent 
flow, linking with the type of spot considered hitherto in this article. Additional points of 
firm agreement on the above and other major features of transitional/turbulent spots remain 
to be secured, of course, especially concerning w167 as Smith [31] mentions in some more 
detail, but the comparisons so far seem encouraging. 
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